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37 Abstract:

38 Estimates of species abundance are critical to understand population processes and to assess and 

39 select management actions. However, capturing and marking individuals for abundance 

40 estimation, while providing robust information, can be economically and logistically prohibitive, 

41 particularly for species with cryptic behavior. Camera traps can be used to collect data at 

42 temporal and spatial scales necessary for estimating abundance, but the use of camera traps 

43 comes with limitations when target species are not uniquely identifiable (i.e., “unmarked”). 

44 Abundance estimation is particularly useful in the management of invasive species, with 

45 herpetofauna being recognized as some of the most pervasive and detrimental invasive vertebrate 

46 species. However, the use of camera traps for these taxa presents additional challenges with 

47 relevancy across multiple taxa. It is often necessary to use lures to attract animals in order to 

48 obtain sufficient observations, yet lure-attraction can influence species’ landscape use and 

49 potentially induce bias in abundance estimators. We investigated these challenges and assessed 

50 the feasibility of obtaining reliable abundance estimates using camera trapping data on a 
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51 population of invasive brown treesnakes (Boiga irregularis) in Guam. Data were collected using 

52 camera traps in an enclosed area where snakes were subject to high-intensity capture-recapture 

53 effort, resulting in presumed abundance of 116 snakes (density = 23/ha). We then applied Spatial 

54 Count, Random Encounter and Staying Time, Space to Event, and Instantaneous Sampling 

55 estimators to photo-capture data to estimate abundance and compared estimates to our presumed 

56 abundance. We found that all estimators for unmarked populations performed poorly, with 

57 inaccurate or imprecise abundance estimates that limit their usefulness for management in this 

58 system. We further investigated the sensitivity of these estimators to the use of lures (i.e., 

59 violating the assumption that animal behavior is unchanged by sampling) and camera density in 

60 in a simulation study. Increasing the effective distances of a lure (i.e., “lure attraction”) and 

61 camera density both resulted in biased abundance estimates. Each estimator rarely recovered 

62 truth or suffered from convergence issues. Our results indicate that, when limited to unmarked 

63 estimators and the use of lures, camera traps alone are unlikely to produce abundance estimates 

64 with utility for brown treesnake management.

65

66 Keywords: bait attraction, brown treesnakes, Boiga irregularis, density, Guam, invasive species, 

67 random encounter and staying time, sampling design, simulation, spatial capture-recapture, space 

68 to event

69

70

71 Introduction

72 Abundance estimation is central to wildlife ecology and management. For example, 

73 abundance estimation contributes to management decisions through the listing and active 

74 management of species experiencing population declines (IUCN 2001, Reynolds et al. 2011), the 

75 assessment of hunter-harvest success (Nichols et al. 2007, Mitchell et al. 2018), the 

76 determination of species reintroduction success (Armstrong and Seddon 2008, Jachowski et al. 

77 2016), and the evaluation of suppression or eradication efforts for invasive species (Ramsey et al. 

78 2009, Link et al. 2018). However, reliable abundance estimation remains challenging to 

79 accomplish. The collection of data necessary for abundance estimation (e.g., capture-recapture) 
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80 can be labor and cost intensive (Pollock et al. 2002), especially for species that are rare or 

81 display cryptic behavior. Abundance indices (e.g., scat counts, aerial survey counts; Tracey et al. 

82 2005, Brodie 2006) may be more affordable to obtain but often do not account for sources of 

83 nondetection bias nor include estimates of uncertainty, limiting their use in management 

84 decisions (Williams and Thomas 2009, Converse et al. 2013). The need for precise abundance 

85 estimates has spurred technological advances in wildlife monitoring to reduce tradeoffs between 

86 data collection gains and financial and logistical costs (Karanth and Nichols 1998, Waits and 

87 Paetkau 2005, Bohmann et al. 2014).

88 Out of these monitoring technologies, camera trapping has emerged as one of the most 

89 well-known and widely used sampling protocols for terrestrial species with cryptic behavior in 

90 the last several decades (O’Connell et al. 2011, Royle and Gardner 2011, Rovero and 

91 Zimmermann 2016, Gilbert et al. 2020). Game or trail cameras (henceforth, camera traps) can be 

92 programmed to automatically sample on a specified schedule and placed unobtrusively across the 

93 landscape, requiring only infrequent maintenance and thus reducing the amount of fieldwork 

94 necessary to collect data over large spatial extents (Karanth and Nichols 1998, O’Connell et al. 

95 2011). Processing these photos, whether manually or via automated processes (e.g., machine 

96 learing; Norouzzadeh et al. 2018), results in a series of species detections at each camera over 

97 time. Unique markings (e.g., pelage patterns) can be used to identify individuals, and estimates 

98 of abundance can thereby be obtained through a capture-recapture or spatial capture-recapture 

99 (SCR) analysis framework (Karanth and Nichols 1998, Royle and Gardner 2011, Royle et al. 

100 2014). However, individual identification in photographs is not possible for many species. There 

101 are abundance estimators based solely on encounter data from unmarked individuals (i.e., 

102 unmarked estimators; e.g., Royle 2004, Rowcliffe et al. 2008, Chandler and Royle 2013, Moeller 

103 et al. 2018, Nakashima et al. 2018). These estimators have assumptions about how animals move 

104 and are detected, which may require additional knowledge about species life history, movement 

105 ecology, or sampling design and equipment (Table 1; Chandler and Royle 2013, Dénes et al. 

106 2015, Moeller et al. 2018, Gilbert et al. 2020).

107 Estimation of species abundance is integral to invasive species management as it can 

108 indicate predation or competition risk to native species, offer a measure of removal success, and 

109 provide guidance for prioritization of management efforts (Maguire 2004). The management of 
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110 invasive species is of pressing global importance in order to minimize loss of native biodiversity, 

111 ecosystem services, and tourism revenue (Mooney and Hobbs 2000, Rodda and Savidge 2007, 

112 Kraus 2009, Pejchar and Mooney 2010). Yet the cost of monitoring and managing established 

113 invasive wildlife can be prohibitive (Pimentel et al. 2005, Larson et al. 2011). Managers require 

114 effective monitoring tools at an acceptable cost tradeoff, and these tools must be able to provide 

115 sufficient data to reliably estimate target parameters in order to inform management decisions. 

116 Camera trapping provides a means to minimize monitoring costs, but certain invasive species, 

117 such as herpetofauna (i.e., amphibians and reptiles), can complicate the use of cameras in both 

118 familiar and novel ways.

119 Reptiles and amphibians are some of the most ecologically and economically damaging 

120 invasive vertebrates (Kraus 2009, 2015). Their suppression and eradication is complicated by the 

121 fact that they are frequently behaviorally cryptic, slow-moving, and prone to engage in long 

122 periods of inactivity (e.g., post-meal consumption; Siers et al. 2018). Monitoring is complicated 

123 by the frequent lack of uniquely identifiable marks, thus requiring physical capturing and 

124 marking. This slow-moving and cryptic lifestyle of herpetofauna specifically presents a 

125 challenge for camera trapping as the likelihood of the target species encountering and triggering 

126 a camera trap may be low. Detection of herpetofauna on camera traps is also complicated by the 

127 lack of locations such as game trails that would ensure well-traveled or predictable pathways for 

128 movement and increase the likelihood of detecting animals as they move around the landscape 

129 (Cusack et al. 2015). Using traps with bait or lures can increase the likelihood of an animal 

130 encountering a trap and being sampled, but this may violate abundance estimator assumptions 

131 concerning habitat use (e.g., Moeller et al. 2018, Nakashima et al. 2018). Additionally, these 

132 ectothermic, slow-moving, generally small species often are not detected on commonly used 

133 passive infrared (PIR) cameras that rely on motion and thermal signatures to trigger a photograph 

134 (e.g., Reconyx Inc. 2013). Channeling animal movement to break a near infrared beam is useful 

135 for sampling some species (Hobbs and Brehme 2017), though not possible for all species (e.g., 

136 arboreal species) and thus sampling frequently requires the automated time-lapse feature to be 

137 used on cameras (Yackel Adams et al. 2019). Depending on the selected time interval between 

138 photographs and the length of the study, this results in thousands or millions of photographs to 

139 process. Despite these challenges, camera trapping may still be useful for monitoring 

140 herpetofauna when alternative sampling methods are prohibitively expensive. Focusing on 
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141 invasive brown treesnakes (Boiga irregularis), we assess whether sufficient camera trap data can 

142 be collected to obtain reliable population abundance estimates for a species with cryptic behavior 

143 that requires the use of lures to obtain an adequate sample of detections on cameras.

144 Brown treesnakes are an ecologically and economically detrimental invasive species now 

145 prevalent across the U.S. territory of Guam, the southernmost island in the Mariana Islands (Fig. 

146 1). They are nocturnal, arboreal, and generalist predators (Rodda and Savidge 2007). Their 

147 accidental introduction in the 1940s and subsequent invasion resulted in the decimation of the 

148 local avifauna and declines in other native vertebrate populations (Savidge 1987, Fritts 1988, 

149 Rodda et al. 1992, Rodda and Savidge 2007). The ability to track changes in brown treesnake 

150 abundance is particularly important for evaluating the effectiveness of management techniques, 

151 such as a novel system for automated aerial delivery of toxic baits for landscape-scale 

152 suppression (Siers et al. 2020). Monitoring to obtain abundance estimates of brown treesnakes is 

153 also important in the conservation of remaining native species and the potential reintroduction of 

154 those that have been locally extirpated. Economic and ecological risks are high when considering 

155 the reintroduction of endangered species on Guam as a single brown treesnake is capable of 

156 eating (or biting and killing without consuming) several prey items in a single evening (Savidge 

157 1987, Lardner et al. 2009, J.A. Savidge pers. comm.). Precision in abundance estimates is 

158 therefore crucial to the management of this system. Abundance estimation can be achieved 

159 through the marking and recapture of individuals. However, as brown treesnakes are 

160 behaviorally cryptic, arboreal, and live in complex habitat, detection probability during a survey 

161 is low (when done at comparable levels of sampling intensity; p̂ = 0.07 for visual surveys, 

162 Christy et al. 2010 and p̂ = 0.14 for trapping, Tyrrell et al. 2009). 

163 We investigated the potential utility of time-lapse camera traps for estimating snake 

164 abundance. These camera traps were set to view snake traps containing a live mouse lure in a 

165 protected chamber that attract but potentially do not always capture snakes. We conducted this 

166 work in a fenced (i.e., geographically closed), intensively monitored population of brown 

167 treesnakes on Guam for which we obtained a precise abundance estimate (hereafter referred to as 

168 the “presumed abundance”) based on SCR methods. This provided a unique opportunity to 

169 validate the use of camera trapping for abundance estimation. Field evaluation is an important 

170 yet rarely accomplished process that allows for real-world comparisons of methodologies 
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171 (Gilbert et al. 2020). We used four common estimators for unmarked populations that were 

172 applicable to our study system: Spatial Count (SC; Chandler and Royle 2013); Random 

173 Encounter and Staying Time (REST; Nakashima et al. 2018); and Space To Event and 

174 Instantaneous Sampling (STE and IS; Moeller et al. 2018). Additionally, we conducted a 

175 simulation study to investigate: 1) the degree to which the use of lures may violate the 

176 assumptions of these estimators and the impact that has on abundance estimates; and 2) whether 

177 increasing the density of camera traps could improve abundance estimation. We present an 

178 assessment of the feasibility of using camera traps in an invasive population given the need for 

179 reliable abundance estimates for management.

180 Materials and Methods

181 Field Sampling

182 Data collection for this study was conducted by U.S. Geological Survey (USGS) 

183 biologists within a 5-hectare (50,000 m2) fenced section of forest located on Andersen Air Force 

184 Base (AAFB) on Guam (Fig. 1 and 2A). This area, known as the Closed Population (CP), was 

185 constructed in 2004 with the goal of creating a population of presumed abundance and 

186 thoroughly-studied demography of brown treesnakes in the field to assess the efficacy of 

187 monitoring and control tools in addition to tracking changes over time and in response to 

188 management actions (e.g., Tyrrell et al. 2009, Christy et al. 2010, Lardner et al. 2013, Nafus et 

189 al. 2018, Siers et al. 2018). The CP was surrounded by a two-way barrier fence (Fig. 2B; Perry et 

190 al. 1998, Rodda et al. 2007) composed of a 1.5 m high chain link fence covered on both sides 

191 with a welded-wire galvanized mesh (6.3 mm square wire spacing) and bounded by a 0.5 m 

192 concrete footer with vegetation removed from 2 m to either side of the fence. The wire mesh was 

193 also formed into a protruding bulge on both sides, at approximately 1.2 m above ground level, 

194 preventing snakes from maintaining traction while climbing and effectively eliminating 

195 immigration into or emigration out of the area.

196 In 2015, a camera trapping study was conducted in the CP. Eight camera traps (Reconyx 

197 Hyperfire model, Reconyx, Holmen, WI) were placed along a series of permanent, parallel 

198 transects lined with pre-established georeferenced grid markers that span the entirety of the CP, 

199 comprising a 13 × 13 grid of markers with approximately 16-m spacing (Fig. 2A). Cameras were 

200 rotated through six different transect and grid marker locations (48 total camera trap locations), 
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201 with each camera in place for seven or ten days (Appendix S1: Table S1). In a given evening, all 

202 13 grid markers (with and without cameras) along an “active” (i.e., surveyed) transect had dual-

203 funnel snake traps equipped with one-way entrance flaps containing live mice as lures, with mice 

204 protected from consumption in separate cages within the snake traps (Fig. 2C; Rodda et al. 

205 1999a). Reconyx cameras were custom-focused to 1.83 m, the distance in front of cameras where 

206 mouse-lure traps were placed. Mouse-lure traps were checked daily and trapped snakes were 

207 released back into the CP (only 5 snakes were captured at traps with cameras during the entire 

208 study). Using the time-lapse feature, camera traps were programmed to take photos every 30 

209 seconds from 6pm to 6am (the documented activity period for brown treesnakes; Rodda et al. 

210 1999b, Siers et al. 2018) for 45 days (27 February-13 April 2015).

211 Photo processing was performed manually, with USGS biologists checking all photos and 

212 recording when a snake entered the field of view (FOV), exited the FOV, and behavior of the 

213 animal when present. Several unmarked estimators used in this paper assume perfect detection of 

214 the target species within a specified area of the camera (requiring a known depth of FOV; Table 

215 1). To ensure this assumption was met, photos were further processed to retain only detections of 

216 snakes up to 1.83 m from the camera, i.e., only records of snakes that were on or in front of the 

217 mouse-lure trap were retained for analyses.

218 Obtaining the Presumed Abundance

219 Over the course of several studies, extensive visual, hand-capture, and trapping surveys 

220 were conducted intermittently along the parallel transects in the CP, starting in 2004 and 

221 continuing through 2015. Surveys were done multiple times within a week and during multiple 

222 weeks within a month. Biologists caught, measured, and marked snakes (through passive 

223 integrated transponder tags and unique, ventral scale clipping patterns not visible without the 

224 handling of animals). We determined the likely abundance of snakes in the CP using these data 

225 from 2013 and 2015-2018 (capture-recapture studies were not conducted during 2014). For 

226 abundance comparisons, we used the number of marked snakes in the size (snout-vent length) 

227 range that could be attracted to mouse-lure traps and thus the proportion of the population that 

228 would be detectable on cameras (i.e., snakes ≥700 mm; Rodda et al. 2007, Tyrrell et al. 2009, 

229 Yackel Adams et al. 2019). Brown treesnakes have size-structured prey-preferences, where 
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230 smaller snakes (<700 mm) largely avoid mammalian prey, partly due to being gape-limited 

231 (Savidge 1988) and partly due to a preference for lizard prey (Lardner et al. 2009). 

232 We counted all animals caught in 2015 (n = 111 snakes). We also checked for individuals 

233 caught in 2013 and again in 2016, 2017, or 2018, implying they were alive during the 2015 

234 sample period. However, no snakes caught in 2013 and observed in 2016 or later were not also 

235 observed in 2015. Newly captured snakes in the CP are often smaller individuals that are born 

236 inside the study area and eventually grow to a size that is more detectable during visual searches 

237 or trappable using mouse-lures. Therefore, n = 5 brown treesnakes that were newly marked in 

238 2016 at  ≥900 mm in size, and were therefore likely ≥700 mm during 2015 but not captured, 

239 were included, resulting in a presumed abundance of 116 (111 + 5) brown treesnakes of 

240 trappable size in 2015.

241 We also performed a spatial capture-recapture analysis (Royle et al. 2013; Data S1) on 

242 data collected in the CP during the same period of time as the 2015 camera trapping study, using 

243 captures of animals ≥700 mm. This analysis allowed us to assess our presumed snake abundance 

244 in addition to providing parameter estimates for use as informed priors in the SC estimator. 

245 These extensive survey data and verification via spatial capture-recapture estimation allowed for 

246 the rare situation in which abundance estimates obtained from unmarked estimators can be 

247 compared to a population with a highly accurate and precise abundance estimate.

248 Data Analysis

249 We used four estimators to estimate abundance and density from the CP camera trap data. 

250 For consistency across estimators, each of the j = 1, 2, …, J camera trap locations are denoted by 

251  within the CP study area, , also called the state-space in SCR terminology. As trap locations �� �
252 were originally established using a standardized grid, camera locations were identified by grid 

253 cell. The total area of the CP (A) was 50,000m2. Surveys occurred on k = 1, 2, …, K occasions, 

254 but the length of an occasion varied by estimator. Across all estimators, abundance and density 

255 are denoted by N and D, respectively. Density was calculated as  (note that the state-� = �/�
256 space area, S, was equal to A) unless otherwise noted. We calculated the camera FOV area, a, as 

257 an equilateral triangle with depth 1.83m (a = 1.93m2). We assumed perfect detection in the FOV 

258 for this study. Each estimator is described below with additional details of estimators in the 

259 primary literature (Chandler and Royle 2013, Moeller et al., 2018, Nakashima et al. 2018), and 
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260 analysis code available in Data S2. We use the originally published notation for each estimator 

261 (based on the code appendices), meaning that the symbols used for parameters may change 

262 meaning depending on the estimator being discussed but are denoted by subscripts.

263 Spatial Count

264 Spatial count (SC) models for unmarked populations rely on spatial auto-correlation in 

265 species detections at trapping locations to estimate the number of animals within a study area. 

266 Following Chandler and Royle (2013), the counts of animals at each trap j across the entire study 

267 period ( ) are assumed to be Poisson-distributed random variables, where��.
268 ��. ~ �������(��,��.��).

269 Here,  is the number of days a camera trap was active and  denotes the expected �� ��,��.
270 encounter rate at trap  per occasion (day) across all individuals.  allows for variation in survey � ��
271 effort across the study period (e.g., traps rotating around grid marker locations). To calculate , ��.
272 we defined rules for unique snake encounters. Brown treesnakes frequently stay for a period of 

273 time in the vicinity of a trap when a mouse-lure is present, entering and exiting the FOV several 

274 times. In order to avoid non-independent encounters of the same individual, we defined unique 

275 events as animals that were not in the FOV within 30 minutes of each other, or animals that were 

276 present in the FOV at the same time and so were known to be unique individuals.

277 The trap-specific encounter rate  is a function of the latent population size in the ��,��.
278 state space ( ), the distance between an individual activity center and trap , and two encounter � �
279 rate parameters: one describing the baseline expected encounter rate at a distance of zero ( ) �0,��
280 and one describing the decline in expected encounter rates as distance between traps and activity 

281 centers increases ( ). We used a data augmentation approach fit in a Bayesian framework to �
282 model these processes (Chandler and Royle 2013). Here, latent indicator variables  denote ��
283 whether individual  was part of the population (1) or not part of the population (0). We assume �
284 , for i = 1, 2, …, M individuals where M is set at a value much greater than the ��~ Bernoulli(�)
285 expected abundance (Chandler and Royle 2013). The latent activity center of individual i ( ) ��
286 denotes the coordinates of individual i’s average location and informs the expected rate of 
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287 encounters at trap  ( ). We assumed a half-normal detection function for encounter rates. � ���,  ��
288 Specifically, 

289 ���, �� =  �0,���(
― ‖�� ―  ��‖2

2�2
)��

290  where the numerator is the squared Euclidean distance between each  and . Note that the �� ��
291 latent indicator variable  prevents encounters of individuals that are not part of the population. ��
292 The expected total encounter rate at trap j across all individuals is then derived as ��.,�� =

293 . Abundance is derived as .∑�� = 1
���,�� � =  ∑�� = 1

��
294 We initially used vague priors where , , �� ~ �������[�] �0,�� ~ �������(0, 5)

295 , and . However, to investigate whether knowledge of � ~ �������(0, 1) � ~ �������(0, 50)

296 snake movement ecology could help improve abundance estimation, we also fit a model with an 

297 informed prior such that  based on the posterior distribution of  � ~ �����(274.69, 7.27) �
298 (i.e., using the mean and standard deviation) from the SCR analysis on hand-captured and 

299 trapped individuals (Appendix S2). We also evaluated a scale prior for abundance where 

300  (Link 2013, Gerber and Parmenter 2015). This resulted in four � ~ ����(1�―6, 1)

301 parameterizations: vague  and , informed  and vague , vague  and informed , and  � � � � � �
302 informed  and  (Table 2). We found that augmentation to M = 500 was adequate to contain the � �
303 full posterior distribution of abundance for most of our parameterizations, though M = 1000 was 

304 needed when we used vague priors for  and .� �
305 Random Encounter and Staying Time

306 The Random Encounter and Staying Time (REST) model uses the number of encounters 

307 and amount of time an animal was present in front of a camera trap (i.e., staying time) to 

308 estimate density (Nakashima et al. 2018). Staying time is inversely proportional to animal 

309 movement speed and is readily obtainable from camera trapping data. Staying time can be 

310 measured through motion-triggered cameras that record video or, as in our study, by multiplying 

311 the number of frames containing an individual by the time-lapse interval between photographs to 

312 get staying time in seconds. As the REST model has no extension for imperfect detection within 

313 the camera FOV area, we caution that a time-lapse interval must be shorter than the minimum 
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314 time it would take an animal to enter and exit the FOV, so that individuals are not missed and 

315 that staying time is properly reflected. 

316 The data required for the REST model include trap-specific FOV area ( ), trap-specific ��
317 effort ( ; i.e., length of time camera  was operational multiplied by the activity proportion), �� �
318 total encounters per trap ( ), and staying time ( ) for each of the  encounters. The �� �� � = 1,2,…,∑���
319 activity proportion corrects for the proportion of individuals that are active and available for 

320 detection during sampling. The REST model relies on the concept that the number of encounters 

321 at trap  is a function of FOV area ( ), effort ( ), density (D), and mean staying time ( ). � �� �� �―1����
322 Following Nakashima et al. (2018), we assume the number of encounters at camera trap j, , is a ��
323 Poisson random variable with mean rate ,�� ��~ Poisson(��).

324 The staying times for each individual encounter ( ) are modeled as exponentially ��
325 distributed random values with mean , or  The mean rate of encounters �―1���� ��~ Exp(�����).

326 at camera j  is itself a function of density ( ), FOV area ( ), trap specific effort ( ), and (��) � �� ��
327 mean staying time ( ) where�―1����
328 �� = ������―1����.

329 In the REST model, D is directly estimable because  and  are provided as data,  is �� �� �―1����
330 estimated from individual staying time, and  is estimated from trap-specific encounters. ��
331 Abundance is then derived as .� = � × �
332 In our study, staying time ( ) was the sum of time (in seconds) that an individual ��
333 remained present across consecutive time-lapse photographs. The REST model also allows for 

334 the censoring of staying times that stretch beyond the period in which cameras are operational. 

335 We censored the staying time of one snake that stayed in the FOV for an entire evening as this 

336 behavior, while not unusual for snakes hiding and digesting large meals (Siers et al. 2018), was 

337 not representative of snakes that are active, and therefore was excluded because activity 

338 proportion is accounted for in the model.

339 We used vague priors where  and . We ����� ~ �������(0,5) � ~ �����(0.1,0.1)
340 assumed a priori that brown treesnake activity might be around 0.6 based on previous work 
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341 concerning the duration of active foraging vs. digestion cycles (Siers et al. 2018). However, 

342 given our presumed abundance, we were able to calculate  using different activity proportions ��
343 (0.2, 0.4, 0.6, 0.8, 1.0) to see what value would return the closest estimate to N = 116 snakes. We 

344 ran five models where we calculated sampling effort as the product of 12 hours of camera 

345 trapping (43,200 seconds per day) over 45 days of sampling and these different activity 

346 proportions.

347 Space to Event

348 The space to event (STE) model (Moeller et al. 2018) uses the area searched (i.e., camera 

349 FOVs) until an encounter occurs to estimate the abundance and density of individuals within a 

350 target area. The STE model relies on the camera time-lapse function so that sampling data can be 

351 defined as the simultaneous and instantaneous animal observations at all camera traps at 

352 specified times (i.e., the animals present in each FOV at the same sampling time). The order in 

353 which camera FOVs are searched is randomized at each time. Perfect detection is assumed 

354 within the camera FOV. This shifts the estimation of abundance from relying on the rate at 

355 which individuals encounter camera traps to how much space was searched before an animal was 

356 detected during a given sample. For example, if on occasion k = 5 we detected an animal at the 

357 third camera, this would result in a space to event of  where  is the FOV area �� = 5 =  ∑3� = 1
�� ��

358 for camera j. If no animal was observed on a camera during an entire occasion, then the space 

359 needed to detect an animal was greater than all our camera FOVs, and data are right censored.

360 Space to event data on occasion , , are modeled as exponential random variables such � ��
361 that , where  is the rate parameter describing the expected number of �� ~ ���(����) ����
362 individuals per unit of space. Abundance can then be estimated as . We used a � = ���� ∗ �
363 vague prior for the rate parameter, . In order to ensure independent ���� ~ �������(0,5)
364 samples at cameras, we determined thirty-minute intervals would, on average, prevent the same 

365 individual from being repeatedly detected at the same camera. That resulted in 25 sampling 

366 occasions within a day (from the start of cameras at time 0 to the 12-hour mark) for each of the 

367 45 days.

368 Instantaneous Sampling
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369 The Instantaneous Sampling (IS) estimator (Moeller et al. 2018) is a simplified estimator 

370 for the abundance of unmarked populations, scaling from the total count of animals observed in 

371 the total area sampled via camera traps to the abundance of animals in the overall study area. 

372 This uses the same data required as the STE model but instead uses the count of all encounters 

373 observed at a camera and occasion ( ) across all FOVs at simultaneous and instantaneous ���
374 samples to estimate abundance and density. Abundance can be estimated with a closed-form 

375 expression as

376 � =  
1� . 

1�  

�∑� = 1

�∑� = 1

�������
377 while confidence intervals (CIs) are obtained via bootstrapping. We used 100 resamples for 

378 bootstrapping.

379 Implementation

380 The first three estimators were fit in a Bayesian framework in JAGS (Plummer 2003) via 

381 the jagsUI package (Kellner 2018) in R (R Core Team 2019; Data S2). We ran all models using 

382 three chains comprised of 40,000 iterations with 10,000 iterations discarded after burn-in and 

383 thinned by 20 to reduce the size of stored files. Model convergence was determined by visual 

384 inspection of traceplots and Gelman Rubin statistics (  ≤ 1.1; Gelman et al. 2013). The IS �
385 estimator was also implemented and bootstrapping was carried out in R.

386 Simulation Study

387 We used computer simulation to determine: 1) if lure attractants can induce bias in the 

388 four abundance estimation approaches; and 2) if increasing camera densities could improve 

389 estimator performance. We aimed to simulate our study system of brown treesnakes to 

390 investigate robustness of the abundance estimators as we changed lure attraction and trap 

391 density. We avoided using our estimation models to simulate the data as we would expect the 

392 generating model to perform best. Instead, we developed a neutral way in which to simulate data 

393 for comparison between estimators.

394 We simulated movement data of 120 snakes in a similar landscape (~5-ha study area 

395 closed to immigration and emigration) during a similar sampling period (12 hours of 
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396 sampling/day over 45 days). To investigate if and to what degree the effective distance of a lure 

397 (henceforth, “lure attraction”) could influence estimates, we simulated three levels of attraction: 

398 1) no attraction (i.e., snake movement was uninfluenced by the placement of traps), 2) low 

399 attraction (i.e., snake movement could be influenced by mice-lures but only within a buffer of 5-

400 m around a trap), and 3) high attraction (i.e., snake movement could be influenced by mice 

401 within a 20-m circumference; A. Yackel-Adams, pers. comm.). We simulated cameras in 5 

402 different orientations: 1) the original sampling design used in 2015 (i.e., 8 cameras rotated 

403 among 48 different locations on the same schedule; Video S1), 2) a static design (i.e., 8 cameras 

404 simulated randomly with no rotation), 3) a static design with double the cameras (i.e., 16 

405 cameras simulated randomly with no rotation), 4) a static design with triple the cameras (i.e., 24 

406 cameras simulated randomly with no rotation), and 5) a static design with six times the cameras 

407 (i.e., 48 cameras simulated randomly with no rotation). Based on the estimate of  from the SCR �
408 estimator, 24 cameras at least 16 m apart (due to spacing on the sampling grid) would result in 

409 approximately two cameras per area of individual use (aka, home range in territorial species), 

410 which fits with recommended camera densities (Rovero et al. 2013, Zimmermann et al. 2013). 

411 However, we also tried a scenario with 48 cameras (9.6 cameras/ha) to maximize the density and 

412 spatial coverage of our traps on the landscape. This resulted in 15 different survey designs in 

413 which snake movements were simulated 100 times each, which we ran using the R package 

414 momentuHMM (McClintock and Michelot 2018). Using potential functions (e.g., Brillinger et al. 

415 2012), we simulated snake movement in discrete time using a bivariate normal correlated 

416 random walk with bias attributable to covariates that influence the direction of snake movement. 

417 Covariates included the study area boundary (to indicate when snakes approached a boundary 

418 and should be turned away) and mouse-lure traps (to indicate when snakes approached a trap and 

419 should be turned towards it; Fig. 3). Snake movement was simulated every hour in order to 

420 minimize computational time while maintaining the information necessary to process data for 

421 subsequent analysis. We specified the mean and standard deviation of step length per hour based 

422 on Siers et al. (2014), where snakes were located via telemetry every day after the snakes moved 

423 overnight (approximately 6pm to 6am) and resettled. We divided the mean daily relocation 

424 distance by 12 hours to obtain a rough estimate of hourly snake step length for our simulations.

425 The output from momentuHMM is a dataset of snake identities and hourly locations 

426 within the study area. We calculated the geometry of all snake movement paths and overlaid 
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427 these paths with camera FOVs. By intersecting these pathways and the camera FOVs, we were 

428 able to generate a dataset of when and where snakes would be detected on a camera (Fig. 3). We 

429 then processed the data according to the requirements of each analytical approach. For example, 

430 for the SC model, we previously defined a unique snake detection event as when snakes within 

431 the FOV were at least 30 minutes apart or occurred in the FOV at the same time. By calculating 

432 the length of snake pathways into, within, and outside of the FOV, we were able to sum the time 

433 between snakes within the FOV in addition to snakes that directly overlapped in time to 

434 eliminate non-unique detections. Additionally, the REST model requires the staying time of each 

435 animal within a FOV. Given that snakes moved at a constant speed during the simulation, this 

436 was obtainable by calculating the proportion of the hour-long path of a snake that was spent 

437 within the FOV. Lastly, the STE and IS models rely on instantaneous and synchronized sampling 

438 of all cameras at designated times, which we defined as occurring every thirty minutes. Similar 

439 to the staying time calculation, this was obtainable by calculating an entry and exit time to the 

440 FOV based on where the snake path intersected the FOV. Each dataset was then analyzed using 

441 the same estimators detailed above and the code found in Data S2. SC models were analyzed 

442 using vague priors and M = 500. We subsequently assessed estimator performance by calculating 

443 1) percent relative bias (PRB; the mean difference between estimated mean and true abundance 

444 as scaled by true abundance * 100), 2) percent coefficient of variation (CV; the mean of each 

445 simulation’s standard deviation of the posterior distribution of abundance divided by the 

446 estimated mean abundance * 100), 3) nominal coverage (Coverage; the percentage of 

447 simulations where 95% highest posterior density interval [HDPI] or CI overlapped true snake 

448 abundance), and 4) when applicable, percent model convergence (Convergence; the percentage 

449 of simulations of the total converged where  < 1.1 for each lure attraction-camera density �
450 scenario). Although rarely reported, the adequacy of model convergence is of particular interest 

451 to our study and serves as a metric to compare the ability of each sampling scenario to collect 

452 sufficient data for each estimator and also to assess the performance of each estimator across all 

453 simulations. If convergence for all parameters was not achieved, estimates from that simulation 

454 were not used to calculate 1-3 above.

455 Results

456 Case study
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457 Over the 45-day sampling period, each camera generated 64,800 photographs (total = 

458 518,400). We retained 197 photo-captures for analysis. As each approach relied on specific rules 

459 to define unique observations and sampling occasions, the total observations used for each 

460 estimator differed (SCR unmarked = 183, REST = 197, STE and IS = 110). Based on extensive 

461 (primarily hand) captures of this closed population, we estimated the abundance in 2015 to be 

462 116 snakes that were of a size to be sampled by camera traps with mouse-lures (D = 23/ha). 

463 Results from the SCR marked estimator support this value, with a mean estimate of 124.35 

464 snakes (HDPI = 110, 140; Appendix S2). As this supports our original estimate, we treated 116 

465 snakes as the presumed abundance for comparison with unmarked estimator results.

466 Estimates of snake abundance, density, and their associated precision varied by estimator 

467 (Table 2; Fig. 3), with estimates from SC models producing particularly long upper tails and thus 

468 resulting in modes of abundance that differ markedly from mean abundance (note: we present 

469 mean abundance estimates within text). Abundance estimates from SC models varied based on 

470 whether vague or informed priors were used (Table 2). The model with vague priors only fully 

471 explored the posterior space when using M = 1000, estimating 167.83 snakes (HDPI = 9, 546; D 

472 = 34/ha). All other SC parameterizations showed adequate mixing and searching at M = 500. 

473 When using an informed prior on  from the SCR analysis, abundance estimates were much �
474 lower than the presumed abundance, with an estimated 10.11 snakes (HDPI = 4, 18; D = 2/ha). 

475 When using this same informed prior on  and , the estimated number of � � ~ ����(1�―6, 1)

476 snakes was similarly low (8.61 snakes, HDPI = 4, 15). Out of the SC estimator parameterizations 

477 we tried, snake abundance was closest to the presumed abundance when we used a vague prior 

478 on  and modeled . However, with an estimated abundance of 74.23 snakes � � ~ ����(1�―6, 1)

479 (HDPI = 7, 174; D = 15/ha), this value was more than one and a half times less than presumed 

480 abundance. We caution that traceplots for this model also showed mild autocorrelation though  �
481 < 1.05, which was true for nearly all SC models.

482 For the REST model, estimates of snake abundance varied widely by the activity 

483 proportion used but HDPI never contained truth. Estimates ranged from 1061.52 snakes (HDPI = 

484 863, 1275; D = 212/ha) when assuming 20% of snakes were active to 212.64 snakes (HDPI = 

485 172, 256; D = 43/ha) when assuming 100% of snakes were active during sampling. Our a priori 

486 assumption of 0.6 as a reasonable approximation of the activity proportion of brown treesnakes 



18

This article is protected by copyright. All rights reserved

487 produced an estimate of 352.80 (HDPI = 287, 425; D = 71/ha) snakes. All REST models had  < �
488 1.05 and adequate mixing of chains indicating convergence.

489 For the STE model and IS estimator, abundance estimates were not close to the presumed 

490 abundance and intervals also never contained truth, with 191.65 (HDPI = 152, 238; D = 38/ha) 

491 and 213.63 (95% CI = 172.4, 258.6; D = 43/ha) snakes estimated respectively. Similarly, the 

492 STE model diagnostics indicated model convergence. 

493 Simulation

494 Using the same rules as our case study to process data, we retained a different number of 

495 simulated observations per estimator. In all instances the number of snakes that passed through 

496 the FOVs increased with increasing lure attraction and simulated camera density, and we present 

497 numbers of observations for the REST estimator as a representative example (note: the other 

498 estimators retained fewer observations due to more stringent rules for unique capture events). 

499 When using no lure, we obtained, on average, 64.1 observations using 8 static cameras and 

500 453.16 observations using 48 static cameras. When using 8 static cameras, we obtained, on 

501 average, 64.4 observations with no lures as compared to 2539.9 observations with high-attraction 

502 lures. Rotating cameras picked up more observations without and with the use of lures (80.3 with 

503 no lures and 5250.72 with high attraction lures) as snakes were able to follow the camera to new 

504 areas and moving cameras intersected with more individual areas of use (Video S1). 

505 Additionally, moving cameras meant that more observations fit the criteria for being far enough 

506 apart in time to be considered unique events for the SC estimator.

507 Estimator Peformance

508 Spatial Count

509 Mean abundance estimates ranged from 43.67 to 271.01 snakes (Table 3; Fig. 4). On 

510 average, high-lure attraction scenarios had 1.13 times the number of snakes of no-lure scenarios 

511 at the same camera densities. Increasing camera density did not improve abundance estimates, 

512 with snake abundance never stabilizing but generally increasing with additional cameras on the 

513 landscape (Table 3). Percent relative bias was negative when using only 8 static cameras but 

514 increased and became positive at higher camera densities and with rotating camera locations 

515 (Table 3). Higher lure attraction scenarios also generally showed greater PRB.
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516 Compared to all other estimators, CV was highest for the SC estimator. The CV 

517 decreased on average 34.8% from no to high lure attraction at the same camera density (Table 3). 

518 Coverage varied by scenario, where 8 static cameras had low coverage (12-52%, with decreasing 

519 coverage as lure attraction increased) while the remainder of scenarios had 38-86% coverage 

520 (with no consistent relationship to lure attraction; Table 3). Convergence varied across scenarios, 

521 ranging from 82-100% for most scenarios (Table 3) though scenarios with 48 cameras had some 

522 of the lowest rates of convergence (63-93%). There was a general trend of reduced convergence 

523 at higher lure attraction and camera densities. The scenario using 16 static cameras at low levels 

524 of lure attraction had the closest estimate to truth (126.20 snakes with PRB = 5.16), though CV 

525 was relatively high (61.78%), HDPI contained truth in only 73% of the simulations, and 

526 convergence was achieved in only 86% of simulations.

527 Random Encounter and Staying Time

528 Mean abundance estimates ranged from 36.24 to 6339.54 snakes (Table 3; Fig. 4). 

529 Contrary to the SC estimator, abundance estimates from the REST estimator increased more with 

530 increasing lure attraction (increasing 43.1 times on average at the same camera density) than 

531 with increasing camera trap density (with no consistent pattern). Percent relative bias was lowest 

532 when there was no lure attraction, again with no consistent pattern by changing camera density 

533 (Table 3).

534 Similar to the SC estimator, CV also decreased with increasing lure attraction (an average 

535 of 84.8% from no to high lure attraction at the same camera density; Table 3). Increasing camera 

536 densities or rotating locations generally had lower CV. Results from the REST model had low 

537 coverage on average, varying between 0 to 43% coverage. Scenarios with no lure attraction were 

538 generally the only instances with coverage greater than 0. Convergence occurred in 100% of all 

539 simulations and scenarios. The camera trapping scenario using 8 rotating cameras at low levels 

540 of lure attraction had the closest estimate to truth (170.36 snakes with PRB = 41.97) with 6.24% 

541 CV, though HDPI contained truth in only 5% of the simulations.

542 Space to Event

543 Mean abundance estimates ranged from 142.83 to 5843.68 snakes (Table 3; Fig. 4). 

544 Similar to the REST estimator, abundance estimates from the STE estimator increased more with 
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545 increasing lure attraction (increasing 23.4 times on average for a given camera density) as 

546 compared to increasing camera density (which showed a pattern of decreasing abundance within 

547 the same lure attraction level). Percent relative bias generally increased with increasing lure 

548 attraction and increasing camera densities or rotating locations.

549 Across all simulations, CV similarly decreased with increasing lure attraction (an average 

550 of 65.3% from no to high lure attraction at the same camera density; Table 3) and increasing or 

551 rotating camera density. Coverage was generally low, varying between 0 and 31% of 

552 simulations, but again only non-zero coverage was achieved in scenarios that had no lure 

553 attraction (Table 3). Model convergence was achieved for all simulations and scenarios. The 

554 camera trapping scenario using 8 static cameras with no lure attraction had the closest estimate to 

555 truth (142.83 snakes) with 16.34% CV, though HDPI contained truth only 25% of the 

556 simulations.

557 Instantaneous Sampling

558 Mean abundance estimates varied from 155.47 to 8809.61 snakes (Table 3; Fig. 4), which 

559 was the highest estimated abundance across all estimators. Again, abundance estimates increased 

560 more with increasing lure attraction (an average of 27.9 times within a camera trap density), and 

561 estimates showed no consistent pattern with increasing camera density. Percent relative bias was 

562 again higher with increasing lure attraction and at rotating or increasing camera densities (Table 

563 3).

564 Similar to other estimators, CV decreased with increasing lure attraction (an average of 

565 80.5% from no to high lure attraction at the same camera density, Table 3) and increasing or 

566 rotating camera density. Coverage was similarly low as well, varying between 0 and 27% of 

567 simulations within a scenario (Table 3). Only scenarios with no lure attraction had CIs that 

568 contained truth, and generally lower camera densities (8 static and rotating cameras) also had 

569 better coverage. The camera trapping scenario using 8 static cameras with no lure attraction had 

570 the closest estimate to truth (155.47 snakes) with 27% CV, though CI contained truth only 27% 

571 of the simulations.

572 Discussion
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573 Wildlife managers require reliable (e.g., precise) information to inform their decisions. 

574 The value of such information is traded off against the cost of attaining it, and logistical 

575 challenges will increase costs. We sought reliable estimates of brown treesnake abundance while 

576 recognizing that the logistical challenges and resulting costs for hand- or trap-captures of snakes 

577 are substantial. Camera traps provide a lower-cost, broad-scale monitoring option but, in our 

578 system, require the use of lures in order to collect sufficient data and restrict analytical 

579 approaches to those based on non-uniquely identifiable individuals. We had the opportunity to 

580 assess the use of camera trapping and unmarked estimators to estimate abundance in a population 

581 of presumed size, an evaluation and comparison of these protocols and estimators that has rarely 

582 been done outside of computer simulations (Gilbert et al. 2020). The CP provided a study area 

583 specifically designed to contain a geographically closed population (here, 116 snakes of a size 

584 that would be sampled in mouse-lure snake traps), and previous studies within CP found similar 

585 abundances (e.g., 122 and 117 snakes; Tyrrell et al. 2009 and Christy et al. 2010 respectively). 

586 The brown treesnake density of 23 snakes/ha within CP is within the resonable range of snake 

587 densities found in Guam’s forests (Rodda et al. 1999c) and is supported by a SCR analysis of 

588 marked individuals (Appendix S2).

589 We found that several of the approaches available for analyzing unmarked data from 

590 camera traps (SC, REST, STE, and IS estimators) did not return values that were accurate or 

591 precise. The average estimated abundance of snakes from the four estimators (from Table 2; N = 

592 161.27) was about 1.4 times the presumed snake abundance within CP, and estimates ranged 

593 from 8.61 to 1061.52 snakes. All estimates were imprecise, with wide HDPIs (vague SC 

594 estimator) or those with narrower HDPI or CIs but that did not contain truth (informed SC, 

595 REST, STE, IS estimators). While model estimates always possess a degree of uncertainty, 

596 estimates with large levels of uncertainty, or estimates that consistently over- or underestimate 

597 truth, will not be useful when making management decisions, and even have the potential to be 

598 counter-productive (e.g., Moore and Kendall 2004). Our evaluation of different estimation 

599 approaches in a field setting is rare in wildlife studies and extremely important in invasive 

600 species management where abundance estimates can radically change the management actions 

601 selected (e.g., Januchowski-Hartley et al. 2011, Rout et al. 2017, Sofaer et al. 2018). Particularly 

602 for brown treesnakes, an abundance index may not be precise enough in order to make reliable 

603 management decisions due to the high level of predation risk a single individual presents 
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604 (Savidge 1987, Lardner et al. 2009, J.A. Savidge pers. comm.). Additionally, as the original 

605 founding population on Guam was only a few individuals (Richmond et al. 2015), precise 

606 abundance estimates will be needed to assess the success of suppression or eradication efforts.

607 Methods for estimating abundance in unmarked populations were developed to solve a 

608 challenging problem; in wildlife conservation and management, we want reliable abundance 

609 estimates for populations on which we frequently have very little information. Unmarked 

610 estimators are needed in many systems where animals cannot be identified or marked and 

611 recaptured in a reliable or cost-efficient manner (Pollock et al. 2002). Each available estimator 

612 relies on different data and assumptions (Table 1) and yet these estimators are similar in that they 

613 are based on either the rate of detections or the interval between detections (e.g., time or space 

614 between events) for abundance estimation. The relatedness of these metrics is important to 

615 understanding similarities in estimates often observed across estimators. For example, assuming 

616 a Poisson distribution with mean rate  for the number of encounters at a trap implies the average λ
617 duration between encounters is exponentially distributed with mean . Models with a Poisson-1 λ
618 type distribution deal with the numbers of occurrences in a fixed unit of time or space (e.g., SC, 

619 counts in REST), and models with an exponential-type distribution deal with the time or space 

620 between occurrences of successive events (e.g., STE, staying time in REST model). Thus the 

621 estimators we used are somewhat interrelated, explaining why they frequently behaved similarly 

622 even though they can be quite dissimilar in the data collection protocols and species behavior 

623 required to meet assumptions (Chandler and Royle 2013, Moeller et al. 2018, Nakashima et al. 

624 2018; Table 1).

625 One common assumption of several of these estimators that we violated is that animal 

626 movement is independent of camera traps (i.e., cameras do not change the behavior of 

627 individuals; Moeller et al. 2018, Nakashima et al. 2018). Specifically, the lures that cameras 

628 were pointed at (rather than the cameras themselves) clearly influenced snake behavior, as 

629 snakes would often spend substantial time trying to gain access to the mouse lure. Furthermore, 

630 we would argue that the use of lures could potentially lead to violation of the assumption that 

631 activity centers are the result of a homogenous spatial point process (Chandler and Royle 2013) 

632 as others have shown individual behavioral effects (e.g., trap-happiness or territoriality) can bias 

633 estimates from SCR estimators (note, Reich and Gardner 2014 found only a minimal bias). 
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634 Additional sources of bias can come from a high degree of home range overlap in the study 

635 species (e.g., brown treesnakes largely lack territoriality) and/or from animals clustering around 

636 lures, increasing the uncertainty in identifying unique individuals in photocapture events. 

637 Additionally, in situations where lure attraction or species movement ecology result in limited 

638 movement between cameras (i.e., at lower cameras densities in our simulation study), sufficient 

639 camera trap density on the landscape may be difficult to achieve in order for the SC estimator to 

640 perform well (i.e., to achieve a sufficient number of spatial recaptures; Chandler and Royle 

641 2013). More investigation on these points are needed to pinpoint solutions for species that violate 

642 estimator assumptions or exhibit challenging life history and movement ecology. We contend 

643 that, if no lure or bait can be used in order to meet assumptions of these estimators, then 

644 detection events are likely to be exceedingly rare for many taxa (e.g., Karanth and Nichols 2011, 

645 du Preez et al. 2014, Peris et al. 2019). Particularly with herpetofauna, which do not use game 

646 trails and, in the case of arboreal species, which use the landscape as a three-dimensional space, 

647 obtaining sufficient captures can be challenging without the use of some means to direct and 

648 channel animal movement (e.g., Hobbs and Brehme 2017, Mills et al. 2019). However, lures 

649 paired with camera traps may better sample herpetofauna as compared to other traditional 

650 methods (e.g., Ariefiandy et al. 2013, Adams et al. 2017). For example, during this study, while 

651 brown treesnakes tended to probe the trap body for access to the mouse, they typically failed to 

652 find either of the trap entrances, and we caught only five brown treesnakes while obtaining 255 

653 photo-captures. One challenge of applying the SC model (Chandler and Royle 2013) was that, as 

654 we used a live prey animal as a lure, snakes spent more time at traps and seemed to return to a 

655 trap to investigate (e.g., leaving the frame for one to a few 30-second time intervals before 

656 returning from the exact locations they appeared to exit). This made defining a photo-capture 

657 event particularly challenging, and sensitivity to the definition of an event in the SC framework 

658 should be further explored. In the case of herpetofauna “sit-and-wait” predators, the utility of 

659 obtaining abundance estimates using camera traps may improve if less-appealing scent lures are 

660 used as compared to live lures (so that sufficient photocaptures are still obtained but lure 

661 attraction is weaker).

662 As lure use is essentially unavoidable in our system, we used simulation to investigate 

663 how sensitive these estimators are to violations of the assumption that behaviors are not changed 

664 by traps. Again, no estimators produced abundance estimates that were reasonably accurate or 
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665 precise. We found that all estimators were impacted by lure attraction, with estimates of 

666 abundance generally increasing with increasing lure attraction. Interestingly, the SC estimator 

667 was less sensitive to lure attraction (though estimates still increased on average), suggesting that 

668 this estimator may be less biased in this respect. Abundance estimates were inaccurate in nearly 

669 all simulations, with values ranging from 36.24 to 8809.61 individuals (or D = 8/ha  to 1891/ha), 

670 an increase of nearly 24,209% as compared to the true abundance of 120 snakes. Yet lure 

671 attraction also increased photo-captures, highlighting the dilemma between obtaining sufficient 

672 camera trapping data and knowingly violating assumptions of estimators, which can drastically 

673 change abundance estimates.

674 Additionally, with only eight cameras, we were limited in how completely our study area 

675 could be sampled in a given survey. As other studies are also similarly limited in the number of 

676 cameras they can deploy, we wanted to assess if increased camera density could improve 

677 abundance estimates. From our simulations, we saw no clear benefit to increasing camera trap 

678 density based on results from these four estimators. There was no pattern of increasing accuracy 

679 or coverage from estimators using data collected from higher densities of cameras, and, more 

680 often, abundance estimates continued to increase with more camera traps used. Additionally, the 

681 presence of any lure attraction combined with increasing camera density led to increasingly 

682 inaccurate and imprecise estimates. The required use of lures to attract animals to camera traps 

683 could limit the usefulness of increasing camera trap density in populations of unmarked animals. 

684 Other limitations are also associated with increasing camera trap density. Beyond the cost of 

685 purchasing more camera traps, there are logistical limitations to processing the data generated by 

686 additional cameras. For many species, particularly ectothermic herpetofauna, motion-trigger 

687 camera traps do not reliably detect animals in the FOV, requiring the use of the time-lapse 

688 function or alternative triggering mechanisms (Hobbs and Brehme 2017, Siers et al. 2019). For 

689 our 45-day study, a single camera set to photograph every 30 seconds generated 64,800 

690 photographs, resulting in 518,400 images across eight cameras. During a study of the same 

691 duration, 16, 24, and 48 cameras would generate 1,036,800, 1,555,200, and 3,110,400 images 

692 respectively. Camera trapping studies must rely on either extensive person-hours to manually 

693 process photographs or, increasingly, on partnerships with groups possessing machine-learning 

694 resources in order to automate processing and management of large photograph datasets 

695 (Norouzzadeh et al. 2018, Young et al. 2018).
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696 There are several promising avenues for research and model development that could 

697 improve abundance estimation processes in our case study, and for herpetofauna with cryptic 

698 behavior more generally. Further work incorporating telemetry data can lead to a better 

699 understanding of how animal behavior (e.g., trap-specific responses such as trap avoidance, lure 

700 attraction; Zarnoch 1979, Meek et al. 2016) can impact abundance estimates based on camera 

701 trapping data, while also providing informed priors for certain model parameters. Particularly in 

702 the context of suppression and removal efforts that change brown treesnake densities, 

703 understanding the response of snakes to traps on the landscape will be important for abundance 

704 estimation. Development of alternate ways to obtain individual identity on cameras (e.g., 

705 reflective tags; Jordan et al. 2011) may also help improve the feasibility of obtaining reliable 

706 abundance estimates using camears. Integration of multiple monitoring methods may also 

707 improve estimation (Sollmann et al. 2013, Blanc et al. 2014, Popescu et al. 2014), allowing 

708 managers to make use of relatively inexpensive camera data by integrating it with smaller 

709 amounts of more expensive data sources to optimally balance reliability and cost. 

710 We possessed information from an atypical situation where, with a presumed abundance, 

711 we could alter estimator priors and parameterizations to see if we could improve abundance 

712 estimates and better recover truth. However, for most studies, managers are dependent on 

713 abundance estimates from estimators with no ability to assess the accuracy or precision of values 

714 outside of simulations. We suggest that, similar to our approach, by comparing multiple 

715 abundance estimation approaches and looking for inconsistencies when changing parameters, 

716 more information can be obtained regarding the reliability of model estimates or at least the level 

717 of associated uncertainty that should be recognized while making management decisions. Our 

718 results also indicate that extreme caution should be used when interpreting estimates to make 

719 management decisions of great consequence on systems with little supplementary knowledge.

720 If extirpated species are to be reintroduced following efforts to reduce invasive predator 

721 abundance, decisions must be informed, intentional, and transparent as uncertainty is often high 

722 and the consequences of (in)action can be monumental (Converse et al. 2013, Fuller et al. 2020). 

723 Restoration efforts for degraded habitats impacted by invasive species must balance the 

724 reintroduction of native biodiversity with the eradication or suppression of invasive species. 

725 Decisions about the deployment of resources and budgeting of time and money often rely on 
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726 changes in demographic rates or abundance of both native and introduced species that trigger 

727 management responses (Armstrong et al. 2006, Garrett et al. 2007). On Guam, abundance 

728 estimates of brown treesnakes in areas targeted for suppression directly contribute to evaluating 

729 suppression success, budgeting money for continued suppression efforts, and assessing 

730 feasibility of vertebrate reintroductions. We found that, given the management decisions 

731 contingent on abundance estimates of brown treesnakes, camera traps and unmarked estimators 

732 alone are likely insufficient to provide the information necessary for management decisions.
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995 Table 1. Summary of the information required, assumptions, and original citation of the estimators for abundance estimation in 

996 unmarked populations that we used for a population of brown treesnakes. Field of view (FOV) indicates the area in front of a camera 

997 trap. We discuss these estimators in the context of closed population abundance estimation, which assumes demographic closure.

Model Data Requirements Assumptions Summary

Spatial Count (SC; 

Chandler and Royle, 

2013)

Count data; Spatially referenced 

traps; Traps in close spatial 

proximity

Stationary activity centers; No territoriality 

(i.e., activity centers do not alter animal 

movement); No temporal correlations in 

observations

Estimates abundance using the 

spatial pattern of animal encounters 

across the state space.

Random Encounter 

and Staying Time 

(REST; Nakashima et 

al., 2018)

Count data; Area of FOV; Motion-

triggered video or short-interval 

time-lapse photographs in order to 

calculate staying time in the FOV

Perfect detection within FOV; Random 

camera placement; No temporal or spatial 

correlations in observations; Animal 

movement is random and independent of 

cameras; Staying time follows parametric 

distribution (i.e., no long periods of 

inactivity)

Estimates abundance as a function 

of the time animals stay in front of 

cameras, thus inferring how they 

move around the landscape.

Space to Event (STE; 

Moeller et al., 2018)

Count data; Area of FOV; Depth of 

FOV standardized to landmark; 

Time-lapse photographs to allow 

instantaneous sample of all cameras 

at defined time

Geographic (at sampling frame level) 

closure; Perfect detection within FOV 

(extension for imperfect detection exists); 

Random camera placement; No spatial or 

temporal correlation in observations; 

Animal movement is random and 

Estimates abundance as a function 

of the total area searched until an 

animal is encountered within a FOV.
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independent of cameras

Instantaneous 

Sampling (IS; 

Moeller et al., 2018)

Count data; Area of FOV; Depth of 

FOV standardized to landmark; 

Time-lapse photographs to allow 

instantaneous sample of all cameras 

at defined time

Geographic (at sampling frame level) 

closure; Perfect detection within FOV 

(extension for imperfect detection exists); 

Random camera placement; No spatial or 

temporal correlation in observations; 

Animal movement is random and 

independent of cameras; Accurate counts 

of animals

Estimates abundance as the total 

number of animal encounters at each 

camera at each instantaneous sample 

as fixed-area repeat counts.
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999 Table 2. Estimated density (D; per ha), median and mean snake abundance (Nmode and Nmean), and 

1000 model specifications fit for all estimators (SC = Spatial Count, REST = Random Encounter and 

1001 Staying Time, STE = Space to Event, and IS = Instantaneous Sampling). Q2.5 and Q97.5 

1002 represent 2.5% and 97.5% highest density posterior intervals (HDPI) for all abundance values 

1003 except the IS estimator where values represent confidence intervals obtained by bootstrapping. 

1004 The parameters from the SC model using vague priors for  and  were only identifiable at M =  � �
1005 1000. The presumed abundance within the Closed Population (CP) is 116 snakes (D = 23/ha), 

1006 which is supported by results from a traditional spatial capture-recapture (SCR) estimator 

1007 (124.35 snakes, HDPI = 110, 140). The STE and IS approaches were unchanged from their 

1008 original formulations (i.e., the default).

Estimator D Nmode Nmean Q2.5 Q97.5

SC

M = 1000

σ ~ Uniform (0, 50), ψ ~ Uniform (0, 1) 34 80 167.83 9 546

M = 500

σ ~ Gamma (274.69, 7.27), ψ ~ Uniform 

(0, 1)
2 7.97 10.11 4 18

σ ~ Gamma (274.69, 7.27), ψ ~ Beta 

(1e-6, 1)
2 5.96 8.61 4 15

σ ~ Uniform (0, 50), ψ ~ Beta (1e-6, 1) 15 57.65 74.23 7 174

REST

Activity proportion = 0.2 212 1060.19 1061.52 863 1275

Activity proportion = 0.4 110 513.97 529.90 424 637

Activity proportion = 0.6 71 348.06 352.80 287 425

Activity proportion = 0.8 53 259.66 265.35 217 320

Activity proportion = 1 43 200.36 212.64 172 256

STE

Default 38 183.55 191.65 152 238

IS

Default 43 212.67 212.11 168 272
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1011 Table 3. Simulation results for each estimator at each camera density and setup (Scenario) and lure attraction level. We report the 

1012 mode and mean of the number of snakes (Nmode, Nmean), the percent relative bias in abundance (PRB), and the percent coefficient of 

1013 variation (CV). We also report the percentage of simulations whose 95% HDPI or confidence intervals contained the true abundance 

1014 of snakes (Coverage) and whose Gelman-Rubin statistic indicated adequate mixing (  < 1.1; not applicable to the IS estimator). For �
1015 most estimators, the number of converged simulations was 100; however, for the SC estimator, Nmode, Nmean, PRB, CV, and Coverage 

1016 were calculated using only those simulations with parameter estimates that converged. True N was 120 simulated snakes (D = 26/ha).

Scenario Attraction D Nmode Nmean PRB CV Coverage  < 1.1�
SC

8 cameras, rotating placement No 42 101.05 195.68 63.07 58.75 86 100

8 cameras, rotating placement Low 52 175.96 241.17 100.98 49.06 78 93

8 cameras, rotating placement High 44 172.75 204.41 70.34 46.88 82 93

8 cameras, static placement No 13 18.72 60.10 -49.92 78.05 52 98

8 cameras, static placement Low 15 26.97 69.15 -42.38 58.91 31 98

8 cameras, static placement High 9 34.56 43.67 -63.61 45.69 12 99

16 cameras, static placement No 27 45.48 127.99 6.65 76.50 85 99

16 cameras, static placement Low 27 62.68 126.20 5.16 61.78 73 86

16 cameras, static placement High 31 100.06 145.92 21.60 50.12 82 85

24 cameras, static placement No 33 66.08 153.40 27.84 71.70 86 88

24 cameras, static placement Low 35 108.35 161.44 34.53 57.03 80 82

24 cameras, static placement High 58 256.31 271.01 125.84 36.78 51 87

48 cameras, static placement No 58 229.47 270.51 125.43 46.37 60 93

48 cameras, static placement Low 45 148.28 209.64 74.70 48.98 53 63
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48 cameras, static placement High 57 226.37 266.97 122.48 32.84 38 77

REST

8 cameras, rotating placement No 8 34.84 36.24 -69.80 16.63 0 100

8 cameras, rotating placement Low 37 169.33 170.36 41.97 6.24 5 100

8 cameras, rotating placement High 391 1821.74 1822.81 1419.01 1.95 0 100

8 cameras, static placement No 38 171.75 179.12 49.27 22.27 43 100

8 cameras, static placement Low 183 849.99 852.10 610.08 7.21 0 100

8 cameras, static placement High 1140 5313.11 5313.16 4327.63 2.83 0 100

16 cameras, static placement No 15 66.94 68.39 -43.01 12.73 17 100

16 cameras, static placement Low 66 306.887 307.20 156.00 4.74 0 100

16 cameras, static placement High 1361 6339.82 6339.54 5182.95 1.83 0 100

24 cameras, static placement No 47 217.08 220.08 83.40 9.70 18 100

24 cameras, static placement Low 205 953.68 953.29 694.41 3.78 0 100

24 cameras, static placement High 1185 554.26 5522.70 4502.25 1.60 0 100

48 cameras, static placement No 44 201.91 202.69 68.91 6.80 5 100

48 cameras, static placement Low 166 771.34 772.14 543.45 2.93 0 100

48 cameras, static placement High 770 3588.51 3589.88 2891.57 1.42 0 100

STE

8 cameras, rotating placement No 38 173.37 175.18 45.98 12.64 31 100

8 cameras, rotating placement Low 158 738.69 738.35 515.29 6.25 0 100

8 cameras, rotating placement High 1254 5846.51 5843.68 4769.73 3.20 0 100

8 cameras, static placement No 31 140.62 142.83 19.02 16.34 25 100
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8 cameras, static placement Low 134 624.04 624.42 420.35 7.03 0 100

8 cameras, static placement High 776 3619.16 3616.04 2913.36 3.54 0 100

16 cameras, static placement No 38 174.25 175.29 46.072 9.80 18 100

16 cameras, static placement Low 151 705.30 703.83 486.52 4.98 0 100

16 cameras, static placement High 917 4268.83 4273.93 3461.61 3.13 0 100

24 cameras, static placement No 41 188.58 189.71 58.09 7.66 17 100

24 cameras, static placement Low 155 721.79 722.27 501.89 4.25 0 100

24 cameras, static placement High 811 3779.89 3778.32 3048.60 3.08 0 100

48 cameras, static placement No 38 178.72 179.30 49.42 5.62 10 100

48 cameras, static placement Low 126 586.05 586.77 388.97 3.69 0 100

48 cameras, static placement High 541 2518.89 2520.85 2000.71 3.06 0 100

IS

8 cameras, rotating placement No 42 192.54 193.66 61.38 12.71 27 NA

8 cameras, rotating placement Low 180 834.87 837.83 598.19 5.89 0 NA

8 cameras, rotating placement High 1891 8819.27 8809.61 7241.34 2.27 0 NA

8 cameras, static placement No 33 152.84 155.47 29.56 16.46 27 NA

8 cameras, static placement Low 149 695.56 696.15 480.12 6.72 0 NA

8 cameras, static placement High 918 4277.94 4276.36 3463.64 2.65 0 NA

16 cameras, static placement No 39 182.94 182.49 52.07 9.53 15 NA

16 cameras, static placement Low 162 751.93 753.75 528.13 4.40 0 NA

16 cameras, static placement High 1091 5079.84 5081.44 4134.54 1.69 0 NA

24 cameras, static placement No 42 193.60 194.50 62.09 7.26 18 NA
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24 cameras, static placement Low 167 777.04 776.39 546.99 3.56 0 NA

24 cameras, static placement High 950 4427.78 4427.50 3589.59 1.49 0 NA

48 cameras, static placement No 39 181.15 181.07 50.96 5.16 8 NA

48 cameras, static placement Low 135 631.27 630.65 426.06 2.74 0 NA

48 cameras, static placement High 617 2874.45 2872.84 2295.37 1.30 0 NA



44

This article is protected by copyright. All rights reserved

1018 Figure 1. The study area located on the island of Guam, (A) located in the Pacific Ocean north of 

1019 Papua New Guinea. (B) Guam is the southernmost island of the Marianas, with the closed 

1020 population (CP) study area located on the northern tip of the island (C; orange diamond, not to 

1021 scale).

1022

1023 Figure 2. The study area (the closed population, CP) and trapping design for the camera study. 

1024 (A) Thirteen trapping transects, each with thirteen coordinate points, formed a grid throughout 

1025 CP. Traps with cameras are highlighted, with color coordinating to the session at which traps 

1026 were deployed (eight cameras at a time). To eliminate a pathway for snake movement, a buffer 

1027 of removed vegetation exists around the outer and inner edge of the fence-line, which is visible 

1028 on a 50-m digital elevation map (Guam Coastal Management Program, 2013). (B) The fence 

1029 possessed a bulge on either side to prevent snakes from climbing into or out of CP. (C) A 

1030 cropped photograph from a camera trap shows a brown treesnake inspecting the trap containing 

1031 the caged mouse lure.

1032

1033 Figure 3. Comparison of abundance and density estimates from the four models evaluated (IS = 

1034 Instantaneous Sampling, REST = Random Encounter and Staying Time, SC = Spatial Count, 

1035 STE = Space to Event). The presumed abundance and density is represented by the dashed line. 

1036 Error bars represent 2.5% and 97.5% highest density posterior intervals for all abundance values 

1037 except the IS estimator where values represent confidence intervals obtained by bootstrapping. 

1038 We included two estimates from the REST model, one from the model using the a prior 

1039 assumption of an activity proportion (activ) of 0.6 and one that achieved the closest estimate to 

1040 the well-estimated number of snakes where activ = 1. We included three estimates from the SC 

1041 model (where M = 500), showing the three main parameterizations of the model priors used (1st 

1042 = vague  and informed , 2nd = informed  and vague , and 3rd = vague  and ; Table 2). � � � �  � �
1043 Additionally, we included a fourth SC estimate (where M = 1000) for the parameterization of 

1044 vague  and .� �
1045
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1046 Figure 4. Comparison of abundance estimates across simulations of each camera trapping 

1047 scenario for the four estimators (IS = Instantaneous Sampling, REST = Random Encounter and 

1048 Staying Time, SC = Spatial Count, STE = Space to Event). Values were calculated from 100 

1049 simulations except for the SC estimator where we used only those simulations with abundance 

1050 estimates that converged. Camera densities increased from 8 static or rotating cameras to 48 

1051 static cameras (top to bottom panels) while lure attraction was absent (No lure) to high (left to 

1052 right panels). Boxplots include median (darker line) abundance within the interquartile range 

1053 (IQR; box), the largest and smallest values within 1.5*IQR (whiskers), and outliers (points). 

1054 True simulated abundance (120 snakes) is indicated as a dashed line.
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